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There is given a foundation for the model of a hereditary medium [l] based 
on the Rabotnov equations. There is poroposed a new method of determining 
the parameters of the equation, which affords the possibility of processing the 
experimental data obtained for different stress laws. 

The general form of the governing equations under consideration is the following: 

(0.1) 

Here o is the stress, e is the strain, a = cp (e) is the equation of the instantane- 
ous strain curves, and F (t - 7) is the kernel of the integral equation governing the 
hereditary properties of the material. 

A method of determining the parameters of a linear equation of hereditary type 

with an exponential fractional kernel of Rabotnov according to the creep curve was 
developed earlier [Z], i. e., a particular case of (0.1) for CJ (E) = EE is considered. 

This method can be used only for linear equations and experiments with constant stress- 
es when the o (T) under the integral sign does not vary with time. In this case, tabl- 
es of the exponential-fractional Rabotnov functions can be used efficiently in the corn - 
putations [3,4]. It is impossible to use integral transform methods in determining the 

parameters of a nonlinear model, hence, values of the parameters of the kernel,obtain- 
ed along linear sections of the isochronic creep curves were used in [5]. The instant- 
aneous curve had already been constructed according to known parameters. 

The method proposed here to determine the parameters does not require applicat- 
ion of integral transforms and is hence suitable for any equations of hereditary type 
with an arbitrary loading law. 

1. Method of the computations of the governing 
equation parameters. Let us assume that K experiments have been 
conducted with quasistatic loading of a rod made of material being investigated in a 
given loading mode CT = IS (t). Let us identify these experiments by the subscript 

k (k = 1, 2, 3, . . .) K); the strain mode in each experiment is determined by its 

dependence ok (t), where all the experiments are conducted so that dok (t) / dt 
> 0, i.e., unloading does not occur. 

Let &kr denote the value of the strain in the t%z -th experiment at the time t, 
and let us consider the times at which the strains are measured to be the same in all 
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the experiments. The method which will be constructed below can be used, without 
substantial variation, even in the case when the strains in each of the experiments are 
obtained at arbitrarily selected times. 

Let the experimental results be reduced to K tables governing the values of the 

strain at the times t, (1< r < R). We assume that the kernel F (t) is a contin- 
uous function of the time defined by a set of two (f, a) or three (f, a, p) paca- 
meters {the use of more than three parameters is inexpedient), which we shall denote 
by the single letter p; hence p = p* means that f = f*, a =: CZ, or f = f*, 
a = “*, $ = @*. 

For a given p values of cp (E) can evidently be found at points Ekr 

tr 

qk, = q [akr (&)I = (Jk (b) + 1 F @, d cIk (b - ‘) a’ 
(1.1) 

0 

Here we used the identity 

t 

which expresses the commutativity of theconvolutionof the functions F (t) and o (t). 

The values of Q, (E) at the points &kt are denoted in (1.1) by qkP analogously to 
the strains. Let us introduce the continuous functions vk (E) which are obtained by 
linear interpola~on in the values of (pk+ 

q$ (8) = i9)kr @ k(t+l) - 8) -i- (Pk(r+l) (8 - &kr)l / tek(r+l) - ekrl 

Then the function cp (8) obtained by continuous “joining” of the functions qk (E) 
has the form 

vk@), ekl<g<EkR, l,<k<K 

cp (8) = 
‘PkR @(k+l)t, - ‘) + %kcl)r, fe - ‘kftf 

‘(kil)r, - ekR 
9 EkR \< e \< e(k+l)t, 

where T, is the largest of the subscripts r such that f&R \< c(k+ar. If the experi- 

ments are conducted so that the segments ekr \< e < nkn do not intersect, then we 

obtain r, = 1 for all k . The construction of cp (a) by means of (Pk (8) is shown 

in Fig. 1. 
To determine cp (e) and p which best describe the material under investigation, 

let us seek the set of parameters governing the nucleus for which the sections of the 

instantaneous stress-strain diagram corresponding to the early strain modes form a Single 

smooth curve. The application of numerical methods for such a search, which will 
admit realization on an electronic computer, first requires quantitative formulation of 

the condition for the optimal selection of p . In order to obtain this condition and to 
reduce the problem of determining the parameters of the nucleus to a formal problem 
on the search for the minimum of a function of several variables C the role of these 

variables will be played by parameters governing the form of the nucleus), we introduce 
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the concept of the gov~~g ~n~ti~al of the inverse problem (we call the problem 
of determining the necleus parameters the inverse problem). 

Let us assume that there is a set of dependences ek (t), ok (t) of the material 
which is described exactly by the governing equation 

and let us consider the set (D of curv- 

es ‘p (8) obtained by the method 
examined above, when p takes on 

values from a certain set P. A 

mutually one- to- one correspondence 
can be set up between @ and P, 

hence, any functional defined on @ 
is, moreover a function of the argu- 
ment p defined in P , So that 

by determining some functional on 

a, a function of the argument p 

who& domain of definition is the set 
P can be set in correspondence to 

En eR a/& er!r gas (5 this functional. We call this function 
the function corresponding to the 

Fig. 1 functional. It evidently has two or 
three arguments, which are the para- 

meters forming the set p. 
Let us call the functional continuous if a continuous function corresponds to it. Let 

us call the continuous functional A (cp) whose domain of definition is the set @, 

governing if A (cp) > 0 and A [q (p))] = 0 if and only if p = p*. 
We shall say that a single-parametric family of functionals AN (cp) defined on 

Q approximates the governing functional A (cp) as N --t 00 if 

lim [AN (cp) - A (cp)l = 0, N + 00, cp E @ 

The sense of introducing the governing functionals is clear from the definitions 

presented. In fact, if at least one such ~nctional is constructed, it is sufficient to 
find a p such that A ftp (p)] = 0, and the inverse problem is solved. The process 

of seeking the root of this equation is equivalent to searching for the minimum of the 
function corresponding to the given functional, i. e., the function of two or three vari- 
ables. This problem has been studied well, and different methods have been develop- 
ed for its solution (random search, formal search, method of gradients, etc.) which are 
realized in standard programs. 

Before proceeding to the construction of the governing functional& let us refine 
some experimental information which must be available for the solution of the inverse 
problem. Let us say that the experimental data are adequate to the determination of 
an instantaneous strain-stress diagram and of the parameters of the nucleus within the 
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framework of a certain class of functions and a manifold of sets of parameters if these 
manifolds contain just one instantaneous diagram and just one set of parameters such 

that (1.2) is satisfied identically for all values of the strain and stress obtained In the 
experiment. This condition must be verified for each specific set of experimental data 
and given instantaneous diagrams and heredity nuclei. 

Let us construct the governing functional in the case when the desired instantane- 
ous curve ‘p* (e) is a polynomial of degree iV and the number R of points obtained 
at each loading satisfies the inequality R > N + 1. For this we construct a Lag- 
range interpolation polynomial of degree N , which we denote by LkN (E, p), where 

%l < & < EXR and we consider the following functionals 

Q K-l 

Q=l k=l 

It follows from (1.3) that A*N (p*) = 0 and the first condition imposed on the 
governing functional is satisfied. Let us show that p = p* follows from AqN (p)= 0 
if the experimental data are adequate for the determination of the nucleus and the 

instantaneous strain-stress diagram. Indeed, it follows from AqN (p) = 0 that LEN 
(E, p) is a polynomial of degree N and p is a set of parameters defining the nucle- 
US such that (1.2) is satisfied identically for all the strains and stresses obtained in the 
experiments. Therefore p = p*. Thus, the following theorem is proved: If a mater- 
ial satisfies the governing equation (1.2), and cp* (e) is a polynomial of degree :V, 
then each of the functionals given by (1.3) is a governing functional of the inverse 
problem. 

It is known that the class of functions allowing an approximation in a finite inter- 

val by means of polynomials is sufficiently broad. The instantaneous strain-stress 

diagram is continuous at least, and therefore, by the Weierstrass theorem, can be 
approximated as accurately as required by a polynomial of degree N. 

Let AN (p) denote any of the iimctionals defined by (1.3). Then in the general 
case of a continuous instantaneous diagram, functionals of the form AN (p) will allow 

the construction of a family of functionals which approximate the governing functional 
as N-too. If such a one-parameter family of functionals is denoted by A*N (p), 
then the governing functional in the general case of a continuous instantaneous diagram 

can be represented in the form A (p) = $_n_ A,N (p). 

For the initial confirmation of the method on an electronic computer, the para- 
meters of a known governing equation were calculated, the results of the computation 
were compared with the exact values of the parameters and the error in the method 
was estimated for different governing functional% The results of solving these test 

problems turned out to be best for the functional A1x which was also used in calcul- 
ations whose results are presented below. The formal search method was used to seek 

the minimum of this functional. 

2. Verification of the method in application to 
R a b o t n o v e q u a t i o n. In order to clarify the possibility of applying the 

method to specific examples, it was first used to process the same data on the creep 
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of fiberglass which were the basis for constructing the nonlinearly hereditary model 
[Sj and the same governing equation was selected 

(2.1) 

u 

3-a (S, t - Tt) .= (f -_ -$a 
f z 6” (t _ +-a) 

n=O I’ [(n + I) (1 - a)1 

Here 3, (p, t - Z) is the Rabotnov function which is the kernel of the integral eq- 
uation and governing the hereditary properties of the material. Equation (2.1) contains 
three parameters, f, a, fl as well as the function cp (a). 

In calculating c&., by means of (1.1) in the case of a kernel having the form of 
an exponential fractional unctions it is necessary to evaluate the integral 

I (t) :--= \3_, (,3, t) at =- l-a 2 p” p(l-a) (2.2) 
i-a I’ [(IL -+ I)(1 -u)j (n f 1) 

0 n--o 

For x = pt(lWa) > 4 it is convenient to evaluate I (t) by starting from the asym- 
ptotic representation 

‘(“)=_$_‘~W~ f.-” pa-a) 

r[1+(1--~)(1--~)] 
n=z 

For ;2: < 1 the series (2.2) converges rapidly and the evaluation of I (t) also 
causes no difficulties. The greatest difficulties occur for 1 < az < 4 since the 
rate of convergence of the series (2.2) drops abruptly. Let us examine one calculation- 

al recipe which permits reducing somewhat the volume of calculations needed. Let 
us introduce the function J (q) connected with the series (2.2) by the ~lat~onship 

J (rl) = &,,g”, t-v 
4, = 

(2.3) 
(1 - 4 (a + t) r [(t + n) (t - a)1 

n=o 

dJ($ m -= 
drl c nu,lpl) 

n=o 

Since the series (2.3) converge uniformly (both series are majorized, the first by the 
series (2. ‘21, and the second by the series defining a-, ( fJ, t)), the function J (11) 
is a differentiable function of the argument q , and therefore, admits of the represent- 

ation 

r(t) = J(1) = J(l-6)-$- [y-q*) pit_O(ap), d>O 

The series (2.3) evidently converge substantially better than (2.2). Electronic 
computer computations showed that the calculation using (2.3) yields not more than a 
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3qo error for 6 = 0.1 if 100 terms are retained in (2.3). 
Experimental creep curves (solid curves) underlying the computations [S] are present- 

ed in Fig. 2, whereupon the following values were obtained for the parameters: a= 
0.885, fI = 0.112 min-(‘-a), f = 0.116 min-(1-a). Stress values equal to 
t2.fS.105, 14.21. 105N/m2correspond to curves 

8.12.105, 
I, 2, 3 .The instantaneous strain curve 

obtained is presented in Fig. 3 (curve l), curve 2 is the diagram obtained in [S] to 
which the following parameters correspond: 
min -(l-a)_ 

a = 0.8, S = 0.32 min -(l-@, f = 0.26 

The results obtained were then used to construct the creep curves. The dashed 
lines in Fig. 2 portray the results of computations of this paper, while the dash-dot lines 

s, h 

60 

Fig. 2 Fig. 3 

are the results of [5]. As is seen, the method developed permits a more accurate com- 
putation of the parameters of the governing equation of the material so that the calcul- 
ated creep curves agree almost completely with the experimental curves. 

3. Foundation for the possibility of using the 
governing equation with an Abel kernel. Asalreadymen- 
tioned above, the governing equation (0.1) with the I& N. Rabotnov kernel can be 
used sufficiently simply just for creep computations with constant stress. In order for 
the nonlinear hereditary governing equation to be used effectively for other modes also, 
it was proposed [l] to simplify the kernel of the integral equation and to take it in the 
form of the Abel kernel F (t) = f tACL, which is characterized by two parameters. 
Processing of a large quantity of experimental results confirmed the possibility of 
using it, the simplicity in this case being evident. Equation (0.1) can now be written 
in the form 
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cp (a) = 0 (t) + f (1 - a) s ft - t)-% (t) dt (3.1) 
0 

The value of 0: is ordinarily taken in the interval 0 < a < 1 since for a = 0 
the kernel loses it singularity and becomes regular while for o = 1 the singularity 
is not integrable. Insertion of the factor 1 - a in front of the integral sign signific- 
antly extends the possibility of using (3. I.): if we put a = 1, then the integral term 

vanishes. This permits combining two fundamental presently-existing models within 
the framework of a single approach. The first is the simplest, it is the ordinary de- 
formation theory (the Karman-Taylor-Rakhmatulin scheme in dynamics, which assum- 

es the existence of a singly dynamic strain diagram independent of the strain rate). 
Setting a = 1 in (3. l), we arrive at the governing equation CT = 9 (e), hence the 
strain diagram is already independent of the loading rate and the prehistory of the proc- 
ess. If we set a = 0 in (3.1). we then obtain after differentiation with respect to 

time 
V’E’ = (4’ + fo (3.2) 

If rp’ = E = const, we then obtain the Maxwell model of a viscoelastic body. The 
second fundamental strain scheme, the Malvern - Sokolovskii model, is based on a 
dependence of the type (3.2). Therefore, (3.1) in the extreme cases a = 0 and 

a = 1 corresponds to two mutually-exclusive strain schemes, as mentioned earlier. 
Equation (3.1) was verified earlier in the processing of a large number of experi- 

ments for different loading modes in both metals and polymersand composrtes [l, 6 -81. 
In order to compare it with (2.1) and to examine whether it does not result in a dimin- 

ution in the number of parameters in the kernel (the exponential fractional kernel con- 
tains three parameters, and the Abel kernel only two), and in an increase in the errors 

in the computations, (3.1) was applied to the same data on fiberglass creep which was 
spoken about above [5]. 

The method elucidated above in Sec. 1 was used in determining the parameters 

of the kernel; it hence turned out that CL. = 0.9593 and f = 3.27 min -(‘-@ for 

the Abel kernel. The appropriate instantaneous strain curves is presented in Fig. 3 

(curve 3). It is seen that the instantaneous strain curves corresponding to (2.1) and 

(3.1) differ radically. 
Furthermore, the parameters and cp (E) obtained were used to construct creep 

curves (see Fig. 2). The correspondence between computations and experiment was so 
good that the curves obtained could not be d~tingu~hed successfully in the scale of 

the sketch. 
It therefore turns out that the simpler equation yields good results and can be re- 

commended as a governing equation for nonlinear hereditary media. 
The great advantage of (3.1) is that it can be used for different loading modes. 

Hence, the procedure for determining the parameters, associated with the formulation 

of a purposeful experiment, is simplified substantially: it is sufficient to have two strain 

curves obtained at different loading rates, 
at the loading rateso’ = 10’JN/m2 

Strain diagrams of organic fibers obtained 

. s and CT’ = i05N/m2,s are presented in Fig. 4. 
In the case of loading m the o’ = const mode, (3.1) results in the simple form 
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cp (8) = 0.t + fcJ’&+=) (2 - q-1 (3.3) 

The diagrams presented in Fig. 4 were used to determine the parameters by the 
method elucidated in Sect. 1. The following values were obtained: a = 0.9795, f = 
1.507 h -(l-ci). The instantaneous strain diagram CT = cp (e) is also presented 

in Fig. 4. The found parameters were then used to predict the behavior of the mater- 
ial under creep, i.e., for a loading in the u = const mode. Results of the comput- 

M 

8 

4 

u 
2 3 

Fig. 4 

/ ations (dashed lines) and the experiment (solid 

lines) are presented in Fig.5 for o=2+10sN/m2 
(curves I) ando = 3.5.105 N/m2 (curves 2). 

I 2 3 

Fig. 5 

In general, the experiment need not be performed absolutely in some definite 
loading mode to determine the parameters of (3.1). The modes u = const and 

’ = const were selected in [l] because the integral is easily taken in this case, 

(39 1) has a very simple form (3.3), and processing the experiments can be executed 
without using an electronic computer. However, the method developed in Sect. 1 to 

solve the inverse problems permits processing experiment .data on an electronic comp- 

uter for arbitrary loading modes. 
A certain modification of(3. l), related to extraction of the elastic and plastic 

hereditary strain components, affords the possibility of using it to describe not only 
polymers and composites but also metals [S - 81. 
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